Note. This article will be published in a forthcoming issue of the Journal of Applied Biomechanics. The article appears here in its accepted, peer-reviewed form, as it was provided by the submitting author. It has not been copyedited, proofread, or formatted by the publisher.

Section: Original Research

Article Title: Normalization to Maximal Voluntary Contraction is Influenced by Subacromial Pain

Authors: Lucas Ettinger¹, Jason Weiss², Matthew Shapiro³, and Andrew Karduna²

Affiliations: ¹Exercise Science, Willamette University, Salem, Oregon. ²Human Physiology, University of Oregon, Eugene, Oregon. ³Slocum Center for Orthopedics and Sports Medicine, Eugene, Oregon.

Journal: Journal of Applied Biomechanics

Acceptance Date: April 6, 2016

©2016 Human Kinetics, Inc.

DOI: http://dx.doi.org/10.1123/jab.2015-0185
Abstract

In this study, we aimed to determine if EMG normalization to maximal voluntary isometric contractions (MVICs) was influenced by subacromial pain in patients with subacromial impingement syndrome. Patients performed MVICs in unique testing positions for each shoulder muscle tested before and after subacromial injection of local anesthetic. In addition to collection of MVIC data, EMG data during an arm elevation task were recorded before and after injection. From a visual analogue pain scale, patients had a 64% decrease in pain following the injection. Significant increases in MVICs were noted in 4 of the 7 shoulder muscles tested: anterior, middle and posterior deltoid and lower trapezius. No significant differences were noticed for upper trapezius, latissimus dorsi or serratus anterior. MVIC condition (pre and post injection) had a significant influence on EMG normalization for the anterior deltoid and lower trapezius muscle. Results indicate that subacromial pain can influence shoulder muscle activity, especially for the deltoid muscles and lower trapezius. Additionally, normalization to MVIC in the presence of pain can have unpredictable results. Caution should be taken when normalizing EMG data to MVIC in the presence of pain.

Keywords: Electromyography, maximal voluntary isometric contraction, normalization, pain, shoulder impingement.

Word count: 3,931
Introduction

Shoulder muscle activation has been measured using electromyography (EMG) since the early 1940’s when Inman and Saunders first examined raw EMG signals from shoulder musculature. Since that time, collection and analysis of EMG data have been standardized in order to make comparisons between individuals and between studies. Recently, normalized EMG was used to examine shoulder muscle activity in healthy subjects, as well as patients with subacromial impingement syndrome. Phadke et al., composed a comprehensive review of scapular muscular activation during arm elevation in patients with subacromial impingement syndrome versus healthy controls. From that review article, seven studies used similar methodological protocols which normalized EMG activity of scapular muscles to maximal voluntary contractions (MVIC) for patients with subacromial impingement and healthy controls. From this review, discrepancies are reported between studies in terms of which scapular muscles have greater activation or lesser activation in the patient population versus healthy controls.

Most studies agree that upper trapezius activity is greater in patients with subacromial impingement than in healthy controls. However, for lower trapezius activity, Ludewig and Cook describe lower trapezius activity to be greater in patients with impingement than in controls; however, Cools et al., described lower trapezius activity to be slower to respond for this population. Three studies found no difference in lower trapezius activity in patients with impingement when compared to healthy controls. The literature offers no consensus for serratus anterior muscle activity for the patient population, where several studies suggest that patients have less activation with impingement whereas others have found no difference in activity for this population versus controls. Several authors have described the middle deltoid muscle to have less activation in patients with impingement than in healthy controls, however, Myers et al., found the middle deltoid to have greater activity in the patient population than in healthy controls. Differences between studies may be due to the severity of the impingement disorder, where some patients have greater disability due to their pain whereas others do not. Furthermore, patients may be avoiding activation of certain muscle such as the deltoids due pain.
inhibition \cite{16,17}, or compensatory strategies to avoid further damage of the supraspinatus tendon within the subacromial space during MVIC testing \cite{14}. Other differences between studies could be related to the normalization of EMG used. Although MVICs are the most commonly practiced normalization tool \cite{Phadke, 2009}{Chester, 2010}, others have used a weighted condition \cite{Ludewig, 2000} and reference values \cite{Lin, 2011}.

Experimentally induced joint pain has been found to attenuate maximal force production in various joints \cite{18-20}. For the shoulder, experimental pain was found to result in a 33\% reduction in maximal isometric external rotation force \cite{19}. Further, the reduction in external rotation force was coupled with inhibition of the infraspinatus muscle, which is a synergist \cite{19}. During experimental pain to the neck region, synergist muscles had reduced activation; however, the kinetic output was unchanged \cite{21}. Similarly Arendt-Nielsen found that experimental pain during gait altered muscle activity where muscles that were normally silent became more active and ones that were normally active became silent \cite{22}. All of these findings suggest acute muscular adaptations to pain; however, they do not represent chronic adaptations as seen with long term joint pathology.

In order to make meaningful EMG comparisons between individuals, standardization of electrode placement and normalization to a maximal voluntary isometric contraction (MVIC) is recommended \cite{23}. Due to the standardization of the EMG normalization, muscle activity is often reported as a percentage of maximal contractibility and not in raw electrical activity as reported by Inman and Saunders \cite{24}. However, it has been cautioned that normalization to a MVIC in injured populations may be influenced by pain where maximal voluntary contraction may not be reflective of the full capacity of the muscle being tested \cite{15,25}. If pain inhibits one’s ability to maximally contract a muscle as suggested by experimental pain studies \cite{18-20}, the resultant MVIC might bias traditional normalization protocols and result in overestimation of muscle activity in terms of percent of total activation (%MVIC).

Subacromial injections of local anesthetics have been shown to decrease shoulder pain in patients with subacromial impingement \cite{26-28}. Further, subacromial injections have been found to increase force
production for the rotator cuff 29, and increase arm abduction and flexion forces in patients with rotator cuff tears 17,30. In a study conducted by Brox et al., (1997) MVICs of several shoulder muscles were shown to be enhanced following a subacromial injection; however, the influence of this change on EMG normalization was not tested 31. It is the goal of this study to examine the influence of pain on shoulder muscle contractibility as measured by standardized MVIC procedures in patients with subacromial impingement syndrome. We hypothesize that through the use of an anesthetic subacromial injection, agonist muscles involved in arm elevation (deltoids) will have increased contractibility during MVIC. Further, we hypothesize that normalization to a MVIC in the presence of pain will result in an overestimation of the percent muscle activation during an arm elevation task.

\textbf{Methods}

\textit{Subject Recruitment and Selection}

Fourteen patients with subacromial impingement participated in this study (55 ± 9 years). Inclusion criterion required a clinical diagnosis of impingement syndrome by one of our authors (MS), the clinical tests required a positive test of: Hawkins-Kennedy (highest sensitivity), Neer (highest specificity), painful arc, empty can (Jobe) and/or external rotation resistance 32. Exclusion criteria were: having had shoulder surgery on the symptomatic side, a positive Spurling test, traumatic shoulder dislocation or instability in the past 3 months, reproduction of shoulder pain with active or passive cervical range of motion, or signs of a rotator cuff tear (drop-arm test, lag signs, gross external rotation weakness assessed by a manual muscle test, or positive radiographic findings). The experimental protocol was approved by the Institutional Review Board at the University of Oregon. Written and verbal instructions of testing procedures were provided, and written consent was obtained from each patient prior to testing.

\textit{Instrumentation}

A Myopac Jr. (Run Technologies, Mission Viejo CA) system was used to collect differential EMG activity from seven shoulder muscles (anterior, middle and posterior deltoids, upper and lower
Normalization to Maximal Voluntary Contraction is Influenced by Subacromial Pain
by Ettinger L, Weiss J, Shapiro M, Karduna A
Journal of Applied Biomechanics
© 2016 Human Kinetics, Inc.

trapezius, latissimus dorsi and serratus anterior). A ground electrode was used on the contralateral clavicle to reduce signal noise. The system had a common mode rejection ratio of at least 90 dB, an amplifier input impedance of 10 MΩ and a band-pass filter (10-1000 Hz). After the data were sampled at 1200 Hz, it was run through a root mean square (rms) algorithm with a 50 ms window which served to rectify and low pass filter the data (rEMG). To calculate the MVIC, each muscle was subjected to a 5 second isometric contraction (described in detail below). The amplitude of the contraction was determined by the rms data over the middle 2 seconds of the muscle contraction.

Two surface electrodes were used for each muscle tested. Oval, pediatric (32 x 38 mm) ECG electrodes (Ag/AgCl) were selected for study due to their small appearance and low inter-muscular cross talk. Electrodes were placed with an inter-electrode distance of approximately 40 mm on the bellies of each muscle. Skin was cleaned prior to electrode placement using isopropyl alcohol preparation pads. Electrode placement for the deltoid muscles 33,34, upper trapezius 7,33, lower trapezius 33,35, serratus anterior 33,36 and latissimus dorsi 33,37 followed protocols described from the literature.

For collection of 3-D in-vivo kinematics of the shoulder complex during the arm elevation task, the Polhemus Fastrack (Colchester, VT) was used. The Polhemus unit consists of a transmitter, three receivers and a digitizer, all wired to a system electronics unit, which determines the relative orientation and position of the sensors in space. The transmitter served as a global reference frame and was fixed to a rigid plastic base and oriented such that its coordinate axes aligned with the cardinal planes of the human body. The digitizer sensor was used to identify anatomical landmarks with respect to the global reference frame. For digitization, participants stood with their arm in a neutral relaxed position. Sensors were attached to anatomical segments using double sided adhesive tape. The first receiver was placed on the thorax on the manubrium of the sternum at approximately the level of T3. The second receiver was positioned on the humerus by mounting it to an orthoplast device positioned on the proximal humerus with elastic straps. The final receiver was positioned over the scapula after mounting it on a custom scapular tracking device machined from plastic 38. This tracker was attached to the scapular spine and
posterior-lateral acromion with Velcro. The transmitter was then positioned approximately 30 cm behind the subject and was elevated to the height of their scapula using a non-metallic tripod. Anatomical landmarks were then digitized using the Polhemus stylus, for the thorax T8, xiphoid process, C7 and jugular notch. For the humeral matrix, the medial and lateral epicondyles were digitized and the center of the humeral head was calculated. To calculate the center of the humeral head, the humerus was manipulated in small circular arcs within the mid-range of motion of the humerus. The center of the humeral head was defined by the point that moves the least with respect to the scapula through a least squares algorithm during humeral calibration. After digitization, the arbitrary coordinate systems defined by the Polhemus were converted to anatomically appropriate coordinate systems based on the recommendations of the International Society of Biomechanics Committee for Standardization and Terminology.

Protocol

For the MVIC collection, each muscle was tested in a unique position using methods previously described and reported to generate maximum shoulder muscle activity. Subjects were trained to preform MVICs in each of the following testing positions and were asked to verbally acknowledge competency in each of the following testing positions, the order of muscle testing was not randomized. For anterior deltoid, the patient performing resisted arm flexion with their affected arm placed in 90 degrees of humeral flexion, the elbow flexed 90 degrees and the forearm vertical. For the middle deltoid, the patient performed resisted abduction with the affected arm in 90 degrees of shoulder abduction, the elbow flexed 90 degrees and the forearm parallel to the floor. Testing for the posterior deltoid involved resisted horizontal extension of the affected arm in 90 degrees of humeral abduction, elbow flexion of 90 degrees and the forearm parallel to the floor. For upper trapezius the patient resisted abduction with the arm placed in 90 degrees of shoulder abduction, the elbow flexed 90 degrees and the forearm parallel to the floor. For lower trapezius the patient's arm was placed in 90 degrees of humeral elevation in the scapular plane and the elbow fixed at 90 degrees. From this position, the subject depressed (downward
and laterally rotated) their scapula against resistance33 42. For generating the greatest amount of activity from serratus anterior we faced many challenges due to pain and subsequent risk of patient dropout. We therefore were unable to follow the recommendations from Ekstrom et al, 2004, Nor were we able to follow the specific recommendations by Boettcher et al., 200833,36. We therefore established a unique testing position combining certain aspects of each protocol where patients tolerated the position and were able to generate the greatest amount of activity. For testing of serratus anterior participants abducted their arm to 90 degrees in the plane of the scapula and performed resisted elevation with force applied to the humerus in the direction of adduction towards the lateral boarder of the scapula. Latissimus dorsi was tested with the subject performing maximal shoulder adduction against resistance with the humerus abducted 30 degrees (in the frontal plane) and internally rotated 37. All MVIC testing was performed before and after subacromial injection. Verbal encouragement were given during all MVIC testing. A single MVIC test was performed for each muscle in a unique testing position.

Before receiving the anesthetic injection, patients performed three arm elevations with their affected arm moving in the scapular plane (30 degrees anterior to the frontal plane) and returning along the same path to a count of four in both directions. Real-time feedback of the scapular plane of motion was observed digitally by the investigator. Trials were repeated when the patient’s arm elevation deviated by more than 10 degrees from the scapular plane. EMG and kinematic data were synchronized and collected continuously for the three elevation trials. Data from the three trials were averaged for subsequent data analysis. Patients were additionally asked to give their current shoulder pain level on a 0-100 visual analog pain scale (VAS) immediately following the shoulder elevation MVIC.

Treatment Procedure

Following kinematic and MVIC evaluations, patients received a subacromial injection of anesthetic (6 cc 0.5% bupivacaine with epinephrine and 3 cc lidocaine with epinephrine) and corticosteroid (1 cc 40mg methylprednisolone acetate) as part of their recommended treatment. The procedure was completed by one of our co-authors (M.S) who is an orthopaedic surgeon. The injection
was performed using an anterior approach where the needle was inserted into the subacromial space and the drugs were administered to the subacromial bursa. Patients were then given a 15 minute adjustment period after the injection and were asked to move their arm in order to disperse the drug within the subacromial bursa. Following the adjustment period, patients were asked to perform a new MVIC for each of the seven muscles tested using the same protocol as described above. No electrodes or sensors were moved during the injection.

To compare the MVIC normalization method, EMG activity during the arm elevation trial (pre injection) were normalized twice. The first method normalized EMG activity by the MVIC before the anesthetic injection, the second method normalized the same EMG activity to a post injection MVIC. A resting trial was subtracted from all EMG data.

\[
\text{Method 1} = \frac{\text{rEMG muscle} - \text{rEMG rest (pre)}}{\text{rEMG MVIC (pre)} - \text{rEMG rest (pre)}} \times 100
\]

\[
\text{Method 2} = \frac{\text{rEMG muscle} - \text{rEMG rest (post)}}{\text{rEMG MVIC (post)} - \text{rEMG rest (post)}} \times 100
\]

The rEMG muscle (pre) depicts the rectified EMG signal from each muscle during the arm elevation task pre-injection. The rEMG rest (pre) illustrates the resting rectified EMG data pre injection. The rEMG rest (post) demonstrates the resting rectified EMG data post injection. The rEMG MVIC (pre) is the MVIC for each muscle pre injection. Finally, the rEMG MVIC (post) is the MVIC for each muscle post injection.

To determine the influence of pain on MVIC, dependent samples t-tests were run. The MVIC (mV) was the quantitative dependent variable. The independent variable was treatment condition, pre and post injection.
To determine the influence of MVIC on normalization technique during an arm elevation task, seven two-way repeated measure ANOVAs were used. The percent MVIC during an arm elevation task were the quantitative dependent variables. Injection (pre vs. post) was the categorical independent variable and humeral elevation angle with 3 levels (30, 60, 90 degrees of elevation) was the second independent variable. The significance level used was $\alpha = 0.05$ for all analyses. Post hoc t-tests using a Bonferroni correction were used whenever significant interactions or main effects were detected. For all statistical testing, SPSS version 16.0. Chicago IL was used.

Results

There was a significant reduction in post-treatment VAS pain ($p < 0.01$) where pre-treatment VAS was on average 56.1 ± 26.1. Post-treatment VAS was on average 21.3 ± 14.7. Mean differences in raw EMG data during the MVIC trials pre-post injection were analyzed by dependent samples t-tests. Results of these tests indicate that larger MVICs were observed for the following muscles post-injection; anterior deltoid (with a mean difference of 0.14 mV and an effect size of 0.31), middle deltoid (with a mean difference of 0.11 mV and an effect size of 0.37), posterior deltoid (with a mean difference of 0.16 mV and an effect size of 0.72) and lower trapezius (with a mean difference of 0.03 mV and an effect size of 0.34), $p < 0.05$. No significant differences were found for latissamus dorsi, upper trapezius, or serratus anterior, $p > 0.05$ (Figure 1).

All results from the ANOVA tests are reported in Table 1. For all muscles tested, only anterior deltoid had a significant interaction between humeral elevation and normalization condition (Figure 2). Follow up t-tests indicated that pre and post injection MVIC normalization differences occurred at 60° of humeral elevation. For all other muscles no significant interactions were found ($p > 0.05$). For the effects of normalization condition, anterior deltoid and lower trapezius were the only muscles influenced, which resulted in overestimation of muscle activity ($p < 0.05$). With the exception of upper trapezius, there was a significant effect of humeral elevation for all muscles tested ($p < 0.05$).
Discussion

From the present study, all patients experienced a reduction in subacromial pain due to an anesthetic subacromial injection. On average, patients experienced a 64% decrease in pain. For the anterior, middle and posterior deltoid and lower trapezius muscles, we found that subacromial pain significantly reduced MVIC levels (Figure 1). However, the reduction of pain had no significant effect on MVIC testing for latissimus dorsi, upper trapezius or serratus anterior. Our results indicate that following a reduction in pain, the anterior deltoid MVIC was approximately 23% higher after pain reduction, 25% higher for middle deltoid, 50% higher for posterior deltoid and 19% higher for lower trapezius (Figure 1). The increase in MVIC post-injection may relate clinically to observed improvements in shoulder range of motion and patient self-reported improvements in shoulder strength post-injection.

Results from our normalization methods indicate that both anterior deltoid and lower trapezius were significantly influenced by normalization to an MVIC in the presence of pain. However, for middle and posterior deltoid, despite having significantly lower muscle activation pre injection during the MVIC testing, there was no significant impact on the normalization of EMG data during an arm elevation task. The unpredictability of the influence of pain on normalization highlights the importance of MVIC testing during a pain free, or reduced pain condition.

Submaximal contractions have been attributed to increased pain in patients with subacromial impingement. Painful nociception is associated with decreased muscle activation from agonist muscle groups. This inhibition is believed to be regulated via inhibitory interneurons. We hypothesize that following a subacromial injection, muscles involved in arm elevation (agonists) would have increased contractibility during MVIC. Our results indicated that all three deltoid muscles (agonists) had greater MVICs post injection thus supporting our hypothesis. Furthermore, we hypothesized that normalization to a MVIC in the presence of pain would result in an overestimation of the percent muscle activation during an arm elevation task. Our results indicated that only anterior deltoid and lower trapezius were...
Normalization to Maximal Voluntary Contraction is Influenced by Subacromial Pain

by Ettinger L, Weiss J, Shapiro M, Karduna A

Journal of Applied Biomechanics

© 2016 Human Kinetics, Inc.

significantly influenced by the normalization method (pre versus post injection MVIC). Therefore, our second hypothesis is only partially supported.

Pain is known to alter muscle activation and human movement. Several adaptations of pained muscle have been described in the literature, where active muscle is inhibited in the presence of pain. This can further be extended to active muscle synergists as well. However, others evidence suggests that postural and stabilizer muscles experience increased gain during pain exposure. Both muscle adaptation to pain models have evolutionary and physiologic explanations; where a reduction of agonist muscle activation in the presence of pain could serve to reducing movement velocity and thus protect the painful part from further damage. Alternatively, postural and stabilizer muscle gain might increase in the presence of pain to maintain function. Therefore, it is possible that muscle responses to pain are joint specific and potentially dependent on cost to the organism, where postural stability may be vital to survivability of the organism. In a study conducted by Kofler et al., (2003) muscle activation during experimental fingertip pain coupled with a gripping task was found to alter muscle activity based on necessity to maintain grip. This finding further elucidates that muscle alterations in the presence of pain can be dependent on the task or need of the organism. Scapular stabilizers may be similar to postural support muscles where their function contributes towards maintaining normal shoulder kinematics and are integral for shoulder health and function, these muscles include serratus anterior, trapezius, and latissimus dorsi. However, there is no consensus on the behavior of these muscles in the presence of pain.

Our findings suggest that all three deltoid muscles and lower trapezius were significantly reduced by pain, thus resulting in reduced MVIC during testing, which is consistent with findings from other shoulder impingement studies. It is possible that prior to the subacromial injection, muscle activation from the deltoids and lower trapezius were inhibited resulting in decreased activation during the MVIC testing. Ludewig et al., found that upper and lower trapezius had more activation in patients with subacromial impingement versus healthy controls. However, our data indicate that lower trapezius
MVIC production is greater following a subacromial injection, suggesting that MVIC for lower trapezius is influenced by pain. Further, this finding supports the necessity to normalize EMG data without pain. We found no change in upper trapezius activity following a subacromial injection. This finding supports evidence from the literature that upper trapezius may be compensating in patients with subacromial impingement and may not be inhibited by subacromial pain. Bandholm et al., found that patients with shoulder impingement had significantly greater latissimus dorsi activity than controls, supporting the pain adaptation model described by Lund et al.,6,43. We found that latissimus dorsi MVIC activation is unaffected by a subacromial injection, which did not support our hypothesis, nor did it support findings from other subacromial impingement studies6,43; however, this finding may suggest that latissimus dorsi is recruited in the presence of pain to help stabilize the shoulder, similar to what has been reported for back stabilizers.45 For most of the muscles tested, between-subject post-injection electromyographic variability was reduced, indicating that a reduction in pain may be associated with more consistent muscular behavior between-patients.

Our results for pre-injection shoulder muscle activity in the scapular plane were consistent with findings from other studies which typically report moderate activity (20 – 50% MVIC) from shoulder musculature.5,53 With respect to normalization practices, our results indicate that percent activation (% MVIC) for anterior deltoid and lower trapezius were significantly overestimated when normalized to the painful MVIC condition (Table 1, Figure 2). This result suggests that previous reports may have over-estimated the contribution from these muscles.3-6 Previous studies present conflicting results in terms of muscular activity of patients with impingement versus healthy controls. In the study, we found that pain may significantly influence percent muscle activity of the lower trapezius and anterior deltoid when normalized to an MVIC. With respect to the lower trapezius, Ludwig and Cook5 demonstrated that patients with impingement syndrome had significantly greater muscle activation than healthy controls at higher arm elevations, all differences were below 20% MVIC. In contrast, De Morias Faria et al., (2008) demonstrated that there were no significant differences between patients and controls for the lower
Normalization to Maximal Voluntary Contraction is Influenced by Subacromial Pain
by Ettinger L, Weiss J, Shapiro M, Karduna A
Journal of Applied Biomechanics
© 2016 Human Kinetics, Inc.

trapezius (mean differences were under all under 10% MVIC). For the lower trapezius, the present study found muscle activation to be on average 12% MVIC greater when normalized before the injection compared to a post-injection normalization. These results would account for more than half of the differences in %MVIC reported between studies with conflicting results, highlighting the importance of normalization to MVIC in a pain-free environment for the lower trapezius. Similarly, studies conflict in terms of middle deltoid activation between patients with impingement versus healthy controls. Previous studies report that patients with impingement had significantly less middle deltoid activation than controls at early elevation angles, with differences as high as 19% MVIC. Myers et al., reported that patients with impingement have greater middle deltoid activation than controls, where patients had greater activation as high as 15% MVIC at low arm elevation angles. For the anterior deltoid we found significant differences in normalization method, where pre-injection deltoid activation was on average 11% MVIC greater than post-injection activation. However, we did not find significant differences for middle deltoid activation based on normalization method. Therefore, we cannot conclude that differences reported in the literature for the middle deltoid are due to the normalization method. Although most of the comparative studies between patients with impingement syndrome versus healthy controls focus on the middle deltoid and ignore the anterior head, results from the present study demonstrate that the anterior deltoid is influenced by pain.

In a study conducted by Myers et al., EMG were normalized by the mean activation of 10 arm elevation trial in patients with subacromial impingement. The author cautioned that normalization to a MVIC might be influenced by the impingement diagnosis. In a study conducted by Roy et al., EMG data from patients with subacromial impingement were normalized to a reference position which consisted of the mean EMG activity while holding the affected arm at a target location while holding a 1 kg weight. Other methods for EMG normalization for patients with subacromial impingement have been described. Although these studies have taken measures to avoid the influence of pain on the normalization of EMG, the ability to compare and contrast between studies is obstructed by the
differences in methodology. From several review articles on muscle activity in patients with impingement syndrome, the most commonly used normalization technique described in the literature is with respect to a MVIC \(^9,55\). Using similar methodologies for EMG normalization between studies aids researchers and clinicians to reach conclusions.

This study does not address rotator cuff activity in patients with subacromial impingement. It is highly likely that pain has an influence on rotator cuff activity, specifically the supraspinatus as this muscle is most often affected by subacromial impingement \(^4,14,15,56\). Indwelling electrodes are the most common method for accessing the rotator cuff muscular activity; however, due to patient and clinician time constraints our instrumentation was limited to surface electromyography. We acknowledge that 4 MVIC normalization tests have been identified as sufficient for producing stable normalization practices in shoulder musculature \(^33\); however, we were unable to collect more than a single MVIC per muscle due to time limitations of our orthopedic specialists and patient needs. Due to the lack of randomization, which was constrained by our clinical design, it is possible that learning effects and familiarization to the protocols and maximal voluntary testing could impact the results post-injection.

Our study suggests that future researchers take caution when normalizing EMG to maximal activation in the presence of pain, especially in patients with subacromial impingement. Additionally, researchers should take advantage of reducing pain in the affected arm before making MVIC measurements whenever possible.

Funding:

This work was partially funded by the Eugene & Clarissa Evonuk fellowship.

Conflict of Interest Disclosure:

We report no conflicts of interest regarding this work.
References

8. Moraes GF, Faria CD, Teixeira-Salmela LF. Scapular muscle recruitment patterns and isokinetic strength ratios of the shoulder rotator muscles in individuals with and without impingement syndrome. Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons ... [et al.]. Jan-Feb 2008;17(1 Suppl):485-53S.

29. Park JY, Lee WS, Lee ST. The strength of the rotator cuff before and after subacromial injection of lidocaine. *Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons ... [et al.].* Jan-Feb 2008;17(1 Suppl):8S-11S.

Normalization to Maximal Voluntary Contraction is Influenced by Subacromial Pain

by Ettinger L, Weiss J, Shapiro M, Karduna A

Journal of Applied Biomechanics

© 2016 Human Kinetics, Inc.

Figure 1. Pre and post injection EMG data (mV) for anterior, middle and posterior deltoïd, latissamus dorsi, upper and lower trapezius and serratus anterior during MVIC testing. P < 0.05 is indicated by *. Variability is reported as standard errors of the mean.
Figure 2. Pre and post injection MVIC normalization during an arm elevation task for anterior, middle and posterior deltoid, latissimus dorsi, upper and lower trapezius and serratus anterior. Variability is reported as standard errors of the mean.
Table 1 Two-Way Repeated Measures Analysis of Variance Table for the Influence of EMG Normalization Condition on Percent Muscle Activation by Humeral Elevation Angles of 30, 60 and 90 degrees.

<table>
<thead>
<tr>
<th>Muscle</th>
<th>ANOVA factor</th>
<th>df</th>
<th>F-ratio</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior Deltoid</td>
<td>Condition (Pre – Post Injection)</td>
<td>1</td>
<td>6.865</td>
<td>0.019*</td>
</tr>
<tr>
<td></td>
<td>Humeral Elevation Angle</td>
<td>2</td>
<td>30.660</td>
<td>0.001*</td>
</tr>
<tr>
<td></td>
<td>Condition x Elevation</td>
<td>2</td>
<td>3.868</td>
<td>0.044*</td>
</tr>
<tr>
<td>Middle Deltoid</td>
<td>Condition (Pre – Post Injection)</td>
<td>1</td>
<td>0.104</td>
<td>0.751</td>
</tr>
<tr>
<td></td>
<td>Humeral Elevation Angle</td>
<td>2</td>
<td>14.239</td>
<td>0.001*</td>
</tr>
<tr>
<td></td>
<td>Condition x Elevation</td>
<td>2</td>
<td>0.192</td>
<td>0.827</td>
</tr>
<tr>
<td>Posterior Deltoid</td>
<td>Condition (Pre – Post Injection)</td>
<td>1</td>
<td>3.799</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>Humeral Elevation Angle</td>
<td>2</td>
<td>7.453</td>
<td>0.006*</td>
</tr>
<tr>
<td></td>
<td>Condition x Elevation</td>
<td>2</td>
<td>1.631</td>
<td>0.229</td>
</tr>
<tr>
<td>Latissamus Dorsi</td>
<td>Condition (Pre – Post Injection)</td>
<td>1</td>
<td>3.094</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>Humeral Elevation Angle</td>
<td>2</td>
<td>7.295</td>
<td>0.008*</td>
</tr>
<tr>
<td></td>
<td>Condition x Elevation</td>
<td>2</td>
<td>1.051</td>
<td>0.380</td>
</tr>
<tr>
<td>Upper Trapezius</td>
<td>Condition (Pre – Post Injection)</td>
<td>1</td>
<td>2.475</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td>Humeral Elevation Angle</td>
<td>2</td>
<td>1.663</td>
<td>0.230</td>
</tr>
<tr>
<td></td>
<td>Condition x Elevation</td>
<td>2</td>
<td>1.441</td>
<td>0.175</td>
</tr>
<tr>
<td>Lower Trapezius</td>
<td>Condition (Pre – Post Injection)</td>
<td>1</td>
<td>6.486</td>
<td>0.024*</td>
</tr>
<tr>
<td></td>
<td>Humeral Elevation Angle</td>
<td>2</td>
<td>9.380</td>
<td>0.004*</td>
</tr>
<tr>
<td></td>
<td>Condition x Elevation</td>
<td>2</td>
<td>0.565</td>
<td>0.583</td>
</tr>
<tr>
<td>Serratus Anterior</td>
<td>Condition (Pre – Post Injection)</td>
<td>1</td>
<td>0.557</td>
<td>0.469</td>
</tr>
<tr>
<td>Anterior Trapezius</td>
<td>Humeral Elevation Angle</td>
<td>2</td>
<td>14.273</td>
<td>0.001*</td>
</tr>
<tr>
<td></td>
<td>Condition x Elevation</td>
<td>2</td>
<td>2.120</td>
<td>0.163</td>
</tr>
</tbody>
</table>

*Note. *indicates statistical significance where p < .05